

RR RF Calibration by Measuring the Synchrotron Frequency in Linear Bucket

Chandra Bhat, Martin Hu and Paul Derwent

RR Group Meeting June 13, 2007

(Preliminary)

Chandra Bhat

Linear Bucket and the Measurement of Synchrotron Frequency

$$f_s = \sqrt{\frac{|\eta| \frac{dV}{dt}}{4\pi^2 \beta_s^2 E_s T_0}}$$

 $\eta = -0.0085$ Slip factor of the RR

 β_s = Relativistic Velocity = 0.9945

 E_s = Synchronous Energy = 8.938 GeV

 T_0 = Revolition Period = 1.11E - 05 sec

The synchrotron oscillation frequency of the beam in the linear bucket is measured as a function of different gain on R:FARBG3 using

- 1. VSA. The VSA was in scalar mode, centered at 89811.224 Hz, span 10 Hz, resolution bandwidth 100 mHz.
- 2. R:VDQ28 (phase detector)

Chandra Bhat

VSA data with R:FARBG3= 1.0

Chandra Bhat

R:VDQ28 data with R:FARBG3= 1.0

Chandra Bhat

Voltage Calibration

$$V = \frac{\text{Bucket Width}}{2} \times \frac{dV}{dt}$$
$$= 2.3668 \text{us} \frac{4\pi^2 \beta_s^2 E_s T_0 f_s^2}{|\eta|}$$

Conclusions:

- 1. Preliminary analysis shows that the VSA and R:VDQ28 data agree within about 2%
- 2. With ARB gain of 1 the available RR RF voltage is 1.43±0.11kV